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SUMMARY

The data jrmn prernous NACA pres~redistribution
imoestigationsof plain flaps and tabs m“th.sealed gaps
have been analyad and are presented in this paper in a
jorrn readily applicable to the probkm8 of control-surface
dem”gn. The experimentallyo%termineduariationof aero-
dynamic parameters un”th$ap chord and tab chord are
giwn in chartform and companions are made un”ththe
theory. With the aid of th~e chati and the theoretical
relationshipsfor a thin airfoil, the aerodynamic character-
istics for control surfaces of any plan form m“th plain
jlaps and tabs w“th sealed gaps may be determined. A
discussion of the. basic equations of the thin-ai@ii
theory and the development oj a number of additional
equations that will be helpful in tuil dem”gnare presented
in the appendixes. The procedurefor appl~”ng the data
is descn”bedand a sample problem of horizontal tail
design is included.

The data presented and the method of application set
forth in thti reprt should proride a reasonably accurate
and satisfactory means of computing the aerodynamic
charactem”stic8 qf control surfaces.

INTRODUCTION

Tho need for an improvement in the method of pre-
dicting the aerod~amic characteristics of airfoils -with
multiple hinged flaps, such as horizontal and vertical
tail surfaces, has long been realized. A number of
valuable contributions of both an experimental and a
theoretical nature have been made but the ultimate
obj ecti-re has not yet been attained. With the inten-
tion of more closely approaching a satisfactory solution
of the problem the National Advisory Committee
for Aeronautics has undertaken a control-surface
inved igation.

The theoretical e.sprcmions for the lift and the
pitching-moment coefficients of an airfoil and the hinge-
moment coefficients of any number of flaps about any
hinge position on the airfoil have been derived in refer-
ences 1, 2, and 3.

E.xperimenk have, however, failed to check the
theory, especially in the case of hinge-moment coe%i-
cieda of smdkhord flaps. It is for this reason that
the design of tail surfaces has depended largely on
experiments.

several experimental investigations of tail surfaces
have been conducted by the hTACA and some recent
data are presented in references 4, 5, and 6. In
order to supply systematic experimental data for the
aerodynamic and the structural design of conf.rol sur-
faces, a prwuredist.ribution inv=tigation of the section
characteristics of an NACA 0009 airfoil with various
sizes of plain flaps and tabs was conducted. The re-
sults are reported in references 7, 8, and 9.

In order to make the data of references 7, 8, and 9
more readily applicable for design purposes, curves have
been prepared to give experimental parametem for a
wide range of flap and tab chords. The parameters
given in this paper may be used with the e..pressions
presented in references 1, 2, and 3 to determine the aero-
dynamic characteristics of tail surfaces with plain flaps
a;d tabs with sealed gaps.

SYMBOLS

The coef%cients and the symboLs used
cal discussion are defied as folIows:

in the theoreti-

airfoil section normal-force coefficient
airfoil normal-force coefficient
airfoil section pitching-moment coeflkient

about quarter-chord point of airfoil
airfoil pitching-moment coefficient about

quarter-chord point of airfoil”
flap section hinge-moment coeftlcient
flap hinge-moment coefficient
tab section hinge-moment coefficient
tab hkge-moment coefficient
section normal force of airfoil
normal force of airfoil
section pitching moment of airfoil about

quarter-chord point
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pitching moment of nirfoil about quarter-
ohord point

flap section hinge moment
flap hinge moment
tab section hinge moment
tab hinge moment
dynamic pressure
mean geometric chord of basic airfoil with

flap and tab neutral
root mean square airfoil chord
mean geometric flap chord
root mean square flap chord
mean geometric tab chord
root mean square tmb chord
airfoil area
airfoil sprm
flap span
tab span
angle of attack
angle of attack from zero lift for airfoil

of infinite aspect ratio -with flap and tab
neutral

angle of attack from zero lift for finite
airfoil with flap and tab neutral

flap deflection with respect to nirfoil
tab deflection with respect to flap
aspect ratio

DISCUSSION
EQUATIONS

The theory of thin ~irfoils is developed in reference 1
and is extended to include a hinged plain flap in ref-
erence 2. The derivations, oompleted in reference 3,
give the theoretical relatio~hips for a finite airfoil
with a multiple hinged plain-flap system. The general
tIIOOW, in agreement wit~” ~~periment, indicafi~ a
linear varirhion of angle of attack, flap deflection,
pitchi.ng-rnomcnt coefBcient
ficient with lift coefficient.

and hinge-moment coef-
IrI order to simplify the

r

malysis, several assumptions were mado in developing
Lhe theory, two of the more important being that tho
Moil may be replaced by a mean camber lirm and tl.mt
the fluid flow leaves the trailing edgo of the airfoil
smoothly. The aerodynamic characteristics of an air-
foiI with a plain flap are expressed in terms of theoreti-
cally determined parameters (see figs. I anU2), which
are used in the equations for the airfoil and tho flap
coefficients. These parameters aro identified and tmns-
formod into the partial diffurentink of standard NACA
coeilicicnts in appondi.. A. Because n conventional
control surface is essentially an airfoil with a series of
plain flaps, these airfoil equations may be applied to
dot+xminc tho chnrac.toristics of control surfaces. Tho
equations in standard NACA form arc:

c~=(%),,,,,[”.-($)cn,,?-‘1)

c~=(%)h,,tfi+(+)“)

cfiF(~)J,,,y+(~),”,,:+(*)c”(3J

(q) “.+(%-).,6Y+(%(4)Chf= aa 8[,8,

The subscripts indicata the factors that ar~ held con-
stant when the partial derivatives are taken.

The relationships in equations (l), (2), ml (3)
readily lend themselves to. the prediction of control-
surfaco ckracterkti~~ such w tub ~~d flap sott~g for
trim, tab operation as a bnlance, ancl f.ho parameters
for free-control stability. From the basic relations,

some of the equations for determining the control
characteristics are developed in nppcmh B, If c! k
the normal-force coefficient of the tnil required for
equili~rium, the tab deflection to trim with zero control
force m —-

,.. ..

and the corresponding flap deflection is

%’hf-”)‘-L %-”’+($)cn,,:’(’h,-’)() [()aa
=f C.,d, z 6*,6, 1

(G)
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lf the control surface is equipped with a balancing tab, where ~,= K&+6,,, ~d ~%ia the ~iti~ tab deflec-
tion for trim and K is the rate of change of the tab deflection with the flap deflection, then tit tiny angle of
attack the flap deflection for zero hinge-moment coeilicient (free-floating angle) is

%chf=o)
=— I (2A(3J1.5+ j-($%)dft(~)6,.ai$)c..,f+($)c.J’10

“-(2j,f,J(%),,,,(%)c.,,,+(2)c,J,+~[-(a*,,,(%),f,J(:),.,6,1

nnd the corrwponding normal-force coefficient is

c~(..f-o)=(%)J,tJ`[~-(%)c=J7@~J-oJ-(%)c.3f(K`'("~f-o'+`'0)l

(7)

(8)

Tho following par~eters, developed in appendix B, me of particular importance for calculations of free-
control stability.

()

* (*)W6(%)*,,J
k Cfif.o= —

. '(2), ft3(~)~fj,(%),nt~T(2),=.,I+K[-(2),,t~(~),f.a(*)cmJ?(~)-l ‘g) “

(10)

The experimental values of the parameters in the
foregoing equations are presented in the following
section. Although some of the equations may appear
cumbersome, it is believed that the form used is most
easily applicable to the prac.ticaI design of a control
surface. From theoretical considerations, however,
these relationships may be much more easily under-
stood if the vmious factors are combined into other
pmameters as shown in appendix B.

EXPERIMENTALDATA

Aerodynamic parameters,—~sperinlental cur v es
(figs. 1 and 2) have been prepared for use in detemoining
the aerodynamic characteristics of any control surface
with a plain-flap aileron, elevator, or rudder with
sealed gaps. These curves, to be used in conjunction
with the equations in the preceding section, are plots
giving the ~ariation of aerodynamic parameters with
the ratio of flap chord to airfoil chord. The para-
meters, obtained for the NACA 0009 airfoil from an
analysis of the section data presented in references 7,
8, and 9, are chosen to be independent of aspect ratio.
The theoretical curves developed by Glauert and Per-
ring (references 2 and 3) for the thin airfoil are repro-
duced in figures 1 and 2 for comparison.

From an analysis of the data in references 7,8, and 9,
it was possible to define all of the experimental curves
of figures 1 and 2 except in figure 2 (c) by points at
Cf/C of O, 0.03, 0.05, 0.06, 0.08, 0.09, 0.10, 0.15, 0.16,
0.24, 0.30, 0,50, 0.80, and 1.00. The expetient~
curves of figure 2 (c) are defined by points at values of
cr/c of 0.30, 0.50, 0.80, ~d 1.00 for the tab SiZCSof O.lOCJ

and 0.30c3 and at 0.30cf/c, 0.50cf/c, and 0.80cf/c for thu
0.20cr tab size. The curve for tho 0.20cr tab was,
however, extrapolated for values of cJ/c from 0.80 to
1.00. For all the parameters of these two figures it
was possible to fair the curves vcith practically no
dispersion of points.

In figuree 1 and 2 the experimental curves have the .—
same general shape as the theoretical curves derived in
refercncw 1, 2, and 3 although in most case their

—

magnitudes are somewhat less. The poorest a.~ce-

in figur= 2 (a) and 2 (c), where the theoretical slopw for
small-chord flaps were much higher negatively than
those given by experiment. This discrepancy has been .
observed in other comparisons betwem theory and
experiment. Because the thmretical parameters were
determined on the assumption of a continuous flow of a
perfect, nonviscous fluid, an awumption that is not valicl
under actual conditions, the disagreement might bo
expected. The discrepancy betwean theory and experi-
ment is important because it occurs within the et/c
range in which most control-surface flaps and tabs lie.
The portion of the hinge-moment coefficient attributd ‘

to the ofkwtivc camber
()

ach,

K c., 8’
L?,(fig. 2 (a)) is “

generally many times greater than the portion caused

by the circulation
()

~hf
~ ,f ,,CN (fig. 2 (b)).

r
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()acm
G ..,4
or

HCllm

a+ cn,df

ad()G c. ,4
or

()
ad
q ,=,6,

.

.-.,. . . . .

..

-.
(a)(bcJM)cm.
(b) (&qW)cn.

FIWJR.EL-Varlaf.irmof (?c@d)c and Rk@6)~ w[th WICor cdcforthe NACA 00LMalrfoli.. .
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A comparison between figures 2 (a) ad 2 (c) indi-
cates that, for tab sizes greater than O.lOCJ, the flap
hinge-moment coefficient obtained by deflecting the
tab a given amount is greater than that obtained by
deflecting the flap the same amount. This remhagrees
with other hat data (referents. 10) and indicates that
a full-span bikmcing tab, with a chord greater than
O.lOcf and a 1:1 ratio of tab deflection to flap defect-
ion w-N produce overbalance. “

From the test results of an NACA 0009. airfoil
reported in references 7, 8, and 9 it was also experi-

()mentally determined that @
ba ~r,8,

=0.095 and

()

&.
Z af,8,

=--0.0106.

Allowable flap and tab defle@ions,-Because the
relationehips in equations (1), (2), (3), and (4) are

flop chordjoirfoilchord, cf/c

o .20 .40 .60 .80 /.00
I I [ 1 I 1 1 I 1 1 I \ I I 1 1 I I

-2+ I lx

FIGUREL?.- Approximatemaximum allowableflap deflection for linear Ilmlts 0[
airfoilcbsraoteristk at verfousan@E=sofattack. Data forNAc..4m@JUfoil With
Inflnlteaspectratio and at an effeetfveReynoldsnnmber of341O,IXI3.

true only for the condition of a linear variation of. the

aemdyn amic coefficients, it is necessary to determine

for various angks of attack the maximum deflection

of a flRp for the linear variation of the lift. In order
to obtain the minimum control force for a given maxi-
mum lift with a plain flap, it is generally better to oper-
ate the flap within this linear range than to use a smaller
chord flap that must operate at flap deflections beyond
the linear range to give the required lift.

The approximate maximum allowable fltip deflection
for linear limits of airfofl characteristics at several
angles of attack are p~otted against the ratio of flap
chord to airfoil chord in figure 3. These limits of

maximum flap deflection, obtained by experiment from
the data of references 7,8, and 9 for inihite aspect
ratio at an effective Reynolds number of 3,410,000,
are the approximate nngles at which the variation of
CZwith ~f ceases to be linear. III most cases, however,
the limits do not indicate the ftap stall because the stall
was observed to occur generally at a flap deflection
from 2° to 6° greater. In some cases, when the tab
was deflected in the direction opposite to the flap,
the change from the linear variation and also the
stall were delayed. The broken portions of the curves
of fgure 3 indicate that, because of the irregular flow
over the small-chord flaps, some uricerttiinty exists as
to the limits of the linear variation of the character:.
istic slopes in this region.

The flapdeflection limits for any given control sur-
face of finite span are dependent upon the aspe& ratio,
the plan form, the twist, and the scaIe effect. Gen-
erally, an increase in scale wou~d tend to increase the .
maximum allowable angle of attack and the flap de-
flection. Various free-flight tests hnve shown, how-
ever, thtit for critical conditions the stalls, and hence
the limits of the linear variation of tho arrodynafnic
characteristics, may not necessarily occur in ftightt in
the Same order that the tunnel taste have indicated.
Because the limits presented in figure 3 are generally
several degrees below the stall obtained by the experi-
ments of references 7, 8, and 9 and becatie most control .
surfaces will bo at a hwger scalo than the scale of these
experiments, it is reasonable to assume that the limik
are conservative.

If._the scale effect is neglected, the limits may l.M
dotcrmhmd by computing tho local angles of nttack at
the critical section for various flap deflections by the
method of reference 11. Thoso angles of attack can
theu.be plotted against the flap deflection to find the
intersection with the a]]owabb-limit curve for infhitc
aspect ratio. For all practical purposes the limiLs for
the ff~p deflection and the angle of titt~tck, when tho
lift is smaU, may be assumecl to be the snme for my
aspect ratio. This assumption is justifiaMe becauso
the magnitude of the correction lies within the .limik
of the experimental accuracy in determining tho curves
for infinite aspect ratio.

Experiments (references 7 to 10] indicate th~L Lnb”-”

effectiveness decreases with an increase in the flap de-

flection. There is reason LO believe, however, that on

cmmmtiona.1 finite control surfaces a satisfactory mmsi-

mum for tab defection exists bdwecn t~w ang]cs. of

+ 15° and ~20° for moderate flap deflccLions, This

result WOUIC1inclicate that, for a cousttint tub chord, it
is better to use a large-span tab deflected to n SImdl
angle than a short-span tab deflected to a Iarge tmgle.

EFFECT OF ASPECT EATIO

‘JM3 slope of the normal-force curve acNpa in
equation (1) for a finite airfoil is dependent on wpoct
ratio A and may be corrected in the following manner:
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()WV =P WLa,,at
Z s,,a,

()
57.37 ~ ~,,a,

(11)

1-L
-1 UA

where bc@ is the slope of the normnl-force curve,
per degree, for Mnite aspect ratio. The term p is a
correction factor for small aspeot ratios, and values
obtained from unpubIiehed data me used in figure 4.
For horizontal surfac~ with end plates, such as twin
vertical surfaces, the value of p is 1. The factor T,

a correction for end-plate effect due to twin vertical
surftice.s, was obtained from reference 4 and its values
tire reproduced in figure 4. For horizontal surfaces
with single vertical surfaces, the value of r is 1, Be-

cause the parameters
(%)~..at and (%)c..tk ‘qua-

tion (1) involve no change in circulation, they are
unaffected by aspect ratio.

~
1.0:

~ ~
/ —

/

q..
P / ‘

(a)
111$ , tll 1111 11 II 1111 II 1 I 1111 1!11 Illf 11!1 1111 1 [11

3 4 5 6
Aspect mfio, A

/.0

\
.9 \

7

.8 _
\

r
\

.7 \
c I \ 1 I

.6 - \

\ (b)
.5 -,111 11111111 1111 I!I1 11 1 1 tflf II 11 1111 1111 Ih, h

(m VnrIatlonofwrnmeter P wfth A fcx0Mc41svrfthoutend plates.
(b) V:~;f.rI of gmarneter r w-Jth h~b. For horizontal surfases with end plates,

FW orizontalsurfaceswith tdn~levartfcalsurfasq r-1. Valuesof r
tt!ke; fromreferenm4.

~d)
FIGURE 4.—Parametersp and r foreorractionOfpeter ~ ~“

In equation (2), if the pitching-moment coefficient
is taken about the aerodynamic center of the airfoil

()Z)cmm.e.and designated Cm=-t-,the parameter —
a6n af,at

is eciual

to zero becuuse

()t)cm=,c
where by defiition —–

aa
is equal to zero. The

Jf#t
same stat~ment is substantially true when the pitching-
moment coefficients are determined about the
quarter-chord point of the airfoil because the values _ ____
of the parameter are so small that, in most cases, they
may be neglected. The other pmametefi in both
this equation and in equation (3) are unaffected by
the aspect ratio because they were determined for a
condition of constant circulation (C’ held constant).
Thus, it should be evident that the vrmiation of equa-
tions (2) and (3) with the aspect ratio depends only
upon the corrected value of C~ for the finite airfoil
as determined in equation (1).

All the parameters in equation (4) arc affechxl by

()bch,
tho aspect ratio. The slope —

ha al,d,
may bti cor-

()m.
rocte(l in th~ same manner as —

da a,,a,
, but the slopes

‘f(%).5andR%).toviw‘-a‘orecOmplay
manner. It can be shown that

From this relation it may be notod that the param-

chtingw in aspect rwtio bwmuso the parmnetcm were
determined for a condition of constant circuhtion.

()t)ch,
The value of —

ba bj,a,
must, however, be corrected

for as~ect ratio as previously mentioned. Hence, the

()?)Chj
value of the parameter —

Ml a,ai
may be correctd for

aspect ratio b.y correcting O~Y t~le portio~~ of fi~. —

()M7hf
expression containing the parameter —

aa a,,al
“ In a

()

achr
similar manner, the parameter ~ must also be

t a,af
corrected for aspect ratio.

The results of model tests and fight tests arc gcmer-
ally presented in a form from -which the paramctels in
equation (4) may be obtained. Because the pararn-
etera in equation (4) are affected by changes in
aspect ratio, the experimental pa.rrimet era for hinge-
moment coefficientts presented in this report are given
in the form suitable for use in equatiog (3), so that they
may be used for any aspect ratio.
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EFFECT OF PLAN FORM

Because aH the paramekre of figures 1 and 2 are
independent t of normal induced velocity, they are inde-
pendent of phm form and twist as well as of aspect
ratio. In general, in order to compute the character-
istics of any flnit.e control surface it is nec~my to
compute the spmwiae lift distribution for each flight
condition as indicated in reference 11. For the special
case of a control sutice having an elliptical span-load
curve, the aerodynamic parameters can be computed
in the manner to be indicated. Such a surface will be
one of elliptical chord distribution and of constant
ratio of flap to airfoil ohord. If for practical purposes
the assumption is made that for any control surface
elIiptica~ lift distribution is approximated, the aero-
dynamic chmactmistics may be readily estimated by
using the experimental data in figures 1, 2, 3, and 4
in the following manner:

(1) Determine the ratios cd cJc and c,/c at as many
stations as may be necessary to define the
surfaces.

(2) Obtain the value for the slopes at each station
from figures I and 2 and plot them against
the span. In order to sum up properly

the parameters
(2)6/t&’(2)Cn;&’ and,..

(-)dc)j,
&

it is essential that they be based
f CwJr

upon a common chord. Therefore multiply
the slopes obtained from figure 2 by tbe
square of the ratio of the flap chord at the
station in question to the root-mean-square
flap chord (Cl/F,)zand plot the product,

(3) Integrate tbe curves and divide by tbe total
airfoil span, thus obtaining the effective
parameter for the entire control surface.

(4) For partial-span tabs it is necessary to intro-
duce an additional factor to allow for the
effect of the normal velocities induced over
the rest of the wing by the tab, Because
the value of this factor has not yet been
satisfactorily determined for a general case,
it must be neglected at present.

APPLICATIO~ OF DATA TO HORIZONTAL T.4JLS

Inasmuch as the determination of the proper hori-
zontal and vertical tail areas, where stability is the
main consideration, is beyond the scope of this report,
only the general problems involved in obtaining ade-
quate control will be considered, The equations and
the charts already presented readily lend themselves
to the scktion of the probkms.

The elevator size is usually determined by the re-
quirements of landing the airplane because getting the
tail down in the presence. of the ground is generally
the most critical condition. This discussion and the
sample problem of tail design included will therefore
be devoted mainly to the determination of the elevator

required for landing and to the chamctoristics of the taiL
Before calculations can be made, however, certain

characteristics of the airplane must be known; namely,
the pitnhing-moment coefficient, the angle of down-
wash, and the dynamic pressure in the region of the -.
tail, These quantities should preferably come from
wind-tunnel t.mts of the model in question because
nacelle fairings and interference effects are critical.
The effects of the slipstream or of a wiqdmilling pro-
peller almuld not be neglected. If wind-tunnel tats
are lackingj the chmacteristioe may be roughly computed
from other teet data, such as those given in reference 12.

Because the presence of the ground affects the down-
wash tind the dynamic pressure over the tail in a man-
ner that has not yet been satisfaotmily determined,
horizontal-tail designs must be based on assumptions
rather than be put on a rational basis. Until further
investigation sets forth either a method of calculating
the ground effect or a tunnel technique for measuring
it, the assumption can be made that, during a landing,
tbe angle of downwasb at the tail is approximatdy zero.

In order to illustrate the method of application of the
data, ag example is presented for an airplane buving
tbe dimensions given in the following table.

Definition

Tail length from most forward center-uf-
gravity loofition of airplane to quarter-
chord point of horizontal tail surface.

Mean aerodynamic chord of wing --------
Wi~ area -----------------------------
Tail mea------------------------------
Tail span------------------------------
Root mean square chord of tail ----------
Aspct ratio of tail ---------------------
Height of quarter-chord point of horizontal

tail above the ground (landing).
Height of ~orizontal tail above center of

gravity of airplane measured normal to
taiI chord.

Angle of attack of ai lane (fandin )------
Tii?Angle of incidence of orizontal ta -------

kwmrned ratio of tab chord to horizontal-
tail chord.

Maximum tab deflection ----------------
Stick length ---------------------------
Maximum deflect ion of control stick when

deflecting the elevator.
Pitching-moment coefficient about ceuter

of ravity of model without tail (a=
!!14. q.

Angle of downwash at tail (landing) (tw-
sumed to have been determined from
wind-tunneI tests).

Ratio of average dynamio pressure over
tail to dynamic prerwure of free air
stream.

h’omz.-The primed values refer to ha
teristics.

ELEVATOR CHORD

.

Dimension
- ..—

1=20.0 ft

CW= 6.8 ft
S=236 q ft
S’=48 s ft
b’= 12.8!t
57=397: ft

do’=9.14 ft

d’=2 ft

~= 14.20
i’=2,0°
c~’lc’=0.06

J/ti==150 ‘
:= 1.76 ft
,= +30”

c mt.0.
=–0.135

7/9=0.96

izontal-tail charac-

The process of calculating the elevator chord required
to land the airplane is as follows:

(1) Compute the eflective aspect ratio A,f of the tail
surface.in the presence of the ground, From reference
13,”when applied to a horizontal tail surface

~l=+a - ‘(12)
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where between the limits

d; 1
;<@y

For the example

Therefore

d;
()

1–0.66 ~~2
u=

()
1.05+ 3.7 g

~=g=o.491
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(13)

1–0.66(0.491)
‘=1 .05+ 3.7(0.491) ‘0”236

and

A;=1_y236=4.5

(2) Compute the slope of the lift curve of the hori-
zontal tail by equation (11) as already outlined. From
figure 4, p=o.933 and r= 1 and, from reference 8, for
an hTACA 0009 airfoil, i3c@x is 0.095. Therefore

()~’ = 0.933 (0.095)

aa 61,6, ~+57.3 (o.095)=0”0w
!K4.5

(3) Determine the angle of attack of the horizontal
tail surface:

a=f=c+-~f-e

=14.2°+2.00—2.20
= 14.0°

(4) Approximate. the pitching-moment coefficient of
the tail Cm’ by assuming a ratio of c~’/c’ and substi-
tuting in equation (2) using the maximum values of
a! and 6,. Obtain the value of ~[~~ from figure 3.

If, for this example, c~/c’ is est~mated to be 0.35, then
from the experimental curve in figure 1 (a)

()acm
@- ,m,J,

=–0.0090

From figure 3, if it is assumed that w’s%’ at %’= 14°,
then 6;=C== —25.6°. From equation (2], if it is esti-
mated that Cx’= —0.2 and assumed that for a tab with
dimensions of 0.3 b’ by 0.06 c!,

(–)acm

%; cn,6f
=0.3(–0.0050)

=–0.0015
Therefore

Cm’= (–0.0105)(–0.2)+ (–0.0090)(–25.6)
+(–0.0015)(15)

= 0.21

(5) Estimate the chord-force coefficient of the tail
L’,’ from the curves in reference 4. The omission of
this term will, however, have no great effect on the
results. From figure 5, reference 4

C[=W25 (approx.)

(6) Ca.lculate the normal-force coefficimt of the tail
:equired to maintain equilibrium by the equation

c.’ =
4
1 ~ S O.= ,,cU+ C.’i’+Cc’d’

q’F’ “ )
(14)

‘A[(k)(%)’-00135)’68)
+ (0.21) (3.75) +2(0.25)]

=–0.17

(7) From equation (l), compute the product

()aa

zf cm,&
8f’=— ()* +%’– ~ ,*,, 6,’ (15)

() ~ 81,6,

()
For the example cited, ~ , ~,is approximated to be

.,

(0.3) (–0.20)=–0.06

Thus, with b,’~a== 15°

()h = –~+14.0–(–0.06) (15)
~/ &,&6f’ .

=17.6°

If accurate dowmrash ‘measurements are lacking
but adequate wind-tunnel data are available, it would
be a better procedure to modify steps (4) to (7) in the
following reamer. Obtain by experiment the pitching-
moment coefficient of the model, including the
tail undivided into stabilizer and elevator. Then calcu-
late the increments of chord-force and pitching-moment
coe.flkien ts of the tail about its quarter-chord point
to obtain the increment of normal-force coefficient
necessary to balance the airplane. The subscript j
with C.V’,Cm’, and 0.’ refers to the change caused
the flap (elevator) deflection.

(
1 ~ %,,, cu+C’m~’i- C.;d’(2V;=J ~f p . .

)

()
b

6; is obtained:The product ~, ,., a,

by

\lGl

From this point on, the procedure is the same as
before. This method has the advantage that, although
it is still necessary to calculate. the angle of attack of the
tail (and hence the downwash) to determine the maxim-
um flap deflection, the downwash computation does
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()not enter into the calculations for the product la
Mf elf’

tmcl hence possible inaccuracies are minimized.
(8) &sign convenient valuea of l&’and compute from

the product of equation (15) vahes of
()

k
=f C.i

Obtain from figure 1 (b) the values of c//c’ corrwpond-

()ing to the computed values of la
Mr CA

and plot them
..

against the assigned .j~’ values.
For the example cited, table I lists the computed

()ba -
values of —

~f c.,ai
and the values of cf’/c’ that corres-

pond to the assigned values of ~J’ when ~t’= 15°.

TABLE I

The values given in table I are plotted in figure 5.
This curve represents the deflection of each flap size
required to produce the required normal force cmflicient
C.’ at the given angle of attack. This procedure was
repeated at.3[=00. The re.dts are likewise plotted in
figure 5,

Effective flop chord foirfm7chord, c,Ic’

Fmum 6.—Re@redflapdatkctlcnsfortab neutral and detlwtwl16”md masimum
allowableflapdafktions forve=rioucvaluesofcfld. .4.’, 4.6;a.’, 14.~;ct’k’,o.~

(9) Plot the curve of maximum allowable&’ against
values of c~/c’ as obtained from figure 3 for the required
angle of attack of the tail surface.

This curve is also plotted in figuro 5. The inter-
section. Qf these curves will indicate th rninti~~n~ .-
effective flap-chord ratio cIJ/c~ and the flap de flechon
necessary to obtain the required CN’ of the tail at h

()angle of attack for landing. Th~ mean valuo of la
t% C* a.

for the &tire tail surface should be that corresponding
to this flap-chord ratio c//c’.

From--a consideration of the maximum free-control
stability and the lowest control forces, it h apparent
that this flap (elevator) of the minimum allowablo size
should -be the optimum size. Hence, for the exanlplc
cited, the curves of figure 5 intersect at ctf’=-260
(approx.), c~/c’=0.40. This result corrwponds to an

()
effective ‘a

W c., &

= -0.67 (fig, 1 (b)). ,

The plan form and the total area having already been
tentatively determined, the objec~ Dow is to divido tho
tail surfaco into stdilizer and elevator in such .mtmncr .. .,

()as to givo a mean vrhm of ~
~f C., d,

corresponding to

the eflective flap-chord ratio just computed. This
clivieion must of necessity be done by a method of
successive approximations in locating the hinge axis or
in making alterations to the plan form. The proceduro
for determining the effective value of any of the param-
eters has already been indicated. The proper 10ca-
tion of the hinge axis having been estimated, tho

. ()ha
effective parameter ~~ en,~, of the assumed mrrmg-

mont can be found.
When the hinge line is proporly ostinl~llcd, the

~echive-&J..( )&ij c., 3,
thus obttiinocl should bo tho smnc as

the value previously calculated. If it is smaller, LI1o
flap size will not satisfy the design requirements; if it
is larger, the stick force may be greater, as can be seen
from the stick-force curve for a rectangular tail in
figure & Likewise, the free-control stmbility will bc
decreased.

For the example cited, with the plan form of t.ho tail
assumed to be that indicated in figure 7, the hinge line
has been located on the second approximation. A
constant flap chord up to the tip section has been chosen
because it can be shown that, in general, such a flap
will have lower stick force-s than one having a highly
tapered plan form. The distribution of tho airfoil
chord tjong the span is elliptical for the M under con-
sideration.

The hinge axis ha- been located, the effective
parameters for the hinge-moment and the pitching-
moment coefficient.s may be determined in the manner
already outlined. For the problem under considera-
tion, this process has been carried otit in detail and tho
following values for the parameters have been obtained:
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~()w c., at
=–0.0076

()&*f

-’z 8,,& =–0.093

(-)

achf

M,
=--0.0032 (approx., by interpol~tion)

cm 6r

()

h

X .%,8,
= – 0.06 (approx.)

STICK FORCE

(1) To compute the stick force, the hinge-moment

~y using equation <3). For the e=ample cited:
C.’=–O.17
a/=15°
8/= —26°

Therefore
C,;= (–0.093)(–0.17) + (–0.0076) (–26)

+ (–0.0032) (15)
=0.165

(2) The stick force is

Cjj‘ (Zf’ybq’tif’
F,= ‘ s (6,) -

For the examde cited, Z;= 1.4S feet.

(17)

When the a-hplane & ~anded at 70 miles per hour, the
dynamic prassure at the tail is

=0.002378
2

(70X 1.47) ’(0.96)

=12.1 pounds per square foot

and
~,= (o.165) (1.48) ’(12.8) (12.1) (–26)

(1.75)(30)
= —27.7 pounds

In order to visualize more clearly the effect of flap
chord on the stick force, calculations were made for a
rectangular tail having flaps of various ratios of cf’/c’
for the conditions of tab neutral and deflected 15°.
The results are plotted in figure 6. In each case the
~~,’ required was —0.17 and the matimum allowable
flap deflection for the particular c~lc’ value was used.
It should also be pointed out that the stick length and
the mmimum stick deflection were held constant,
which resulted in an increased mechanical advantage
~f/& for large-chord flaps. The curves indicate that a
given size tab is much more effective in reducing stick
forcw of lmge-chord flaps than small-chord flaps. This
result is an expected one because figure 2 (c) indicates
t.hc same result when hinge moments rather than hinge-
moment coefficients are considered. The computations
also show that the highest stick forc~ occur in the range
of c,’/c’ most commonly used in prasent-day practice:
from 0.40 to 0.60.

TAB AND FLAP DEFLECI!IO?JS TO TRIM

It is considered desirable to install a trimmin g tab
effective enough to trim the airpkme when an approach

for landing is being made. If, for this condition, the
rmgle of attack for the tail and the normal-foroe coeffi-
cient required of the tail are known, the tab setting to
trim with zero stick force may be cumputed from equa-
tion (5). For the airplane used in the example b glide

Effeciive flan chordkrirfoiichord. c.’Ic’

-lo
.5,

, 15”

-20 t , ‘

k’ H—+++ti

-50

-80

FIGUBE6.—Re@red stick frme for tab neutral and deSeetedUP fcwlsmdfn with
reetangnfartalk fmvarfoue.m.lueeofc~~. A,F,4.&u=’,14.IY;c{Ic’,O.&

*

~ 1- :->’ ,

+
:

“b
- .. . ....<.... . . . . . ... ..

b
Q

11-28.8’ 230”4 ““”
153.6”

1.4.!

mGURE7.—Tailsurfare with ellipticalsdrfoihc.herddistribution and consthnt+hord
plefn Etipand tnb.

in equilibrium at 110 miles per hour it is oomputed
that

a=~=—l.p

C’N’=-O.14

Calculate the slope of the Lift curve in free air by equn-
tion (11):

Therefore from equntion (5)

[
–0.14 –

I

1

–0.093 ‘

‘~’ (Ch=0)=
(0.054) (–0.67)+ –0.0076 ‘:;.;

(–0.06) (–0.0032)
(–0.67) ‘(–0.0076)

=11.4”
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The corresponding flap deflection required to maintain equilibrium may be computed from equation (6).
Thus for the example cited

[
(-0*14) _(-~oZ)+(-o.06) (11.4) ]=-3.1°

‘r’ (Ch,-o)‘+ (0.054)

When the tab is used as a balancing tab, the free-floating angle of the flap may be computed from equntion
(7). For the example cited

6/=K8i+d%’, when ~,o’=lo and K= –0.5

Thus, when %’= – 1.2°,

bf’(Ch,-f))
(TO.093) (0.054) (-1.2)+[– (–00093) (0.054) (–0.06)+(–0.0032)](1)

= – – (–0.093) (0.054) (–0.67)+ (-0.0076)+ (–0.5)[–(–0.093) (0.054) (–0.06) + (–O.003Q)1‘0”270

The corresponding normal-force coefficient of the tail is determined by equation (8). Thus for the wmmple
under consideration

Civ’(c~,-o)=0.054{ (–1.2)– (–0.67) (0.27)– (–0:06)[1+ (–0.5) (0.27)]} =-0.03

The rate of change of free-floating angle with angle of attack may be calculated from equation (9). Thus

()

Mf (–0.093)(0.054)
Ta CL*= –— (–0.093) (0.054) (–0.67) + (–O.0~76) + (–0.5)[– (–0.093) (0.054) (–0.06) + (–0.0032)1=–0”546

Similarly the slope of the lift curve for the tail with controls free.is found from equation (10).

()acfJ
-z- c,+ = (0.054) {1–[(–0.67)+ (–0.5)(–0.06)][–0.546) }=0.035

APPLICATION OF DATA TO VERTICAL TAILS AND AILERONS

This entire procedure may be used equally well to calculate rudder size, with the obvious modification of
substituting yawing-moment coefficients for pitching-moment coefficients and sidewash for downwash in
calculating the normal-force coefficient required.

The section parameters preaentecl in th~ report may also be used to compute aileron characteristics by means
of the method outlined in reference 14.

LANGLEY MEMORIAL AERONAUTICAL LABORATORY,

N7ATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

LANGLEY l?ELD, VA., December 30, 1$40.



APPENDIX A

EQUATIONS OF THE THIN-MRFOIL THEORY
IDENTIFICATION OF PARAMETERS

The conversion of the equations for the aercd~amic
characteristics of a finite airfoil based on the thin-
airfoil theory (references 1, 2, and 3) from the old
British system of aerod~amic coefficients to the stand-
ard N7ACA form and the use of symbols for the param-
eters, or slopes, in these equations has led to some mis-
understanding as to the identity of these parameters.
The purpose of this analysis is to clarify the identity of
the parameters and to distinguish between the ones
that are sometimes confused because of a similarity in
form. In addition, a summary of the relations is given
whereby other useful parameters not presented in fig-
ures 1 nnd 2 may be computed from these data.

If
cv=jl(a,~f,~t)

it follows that

which is ident.icnl to

Likewise if

tin=j, (G!?)af,a,)

it follows that

or, if it is considered that

chf=jt(%~f$t)

Because, according to the thin-airfoil theory, a linear

relationship exists among the variabl~ c~, Chf, Cm, CY,fSA

and 81, the total differential in the foregoing equations
may be replaced by the variable. Because no change

. . . ()aa
in circ.ulatlon N revolved, ~, c~,tl is identical with

)3CY
Ff ti,&

, etc. The subscripts indicate the variables

ild constant when the partial differential is taken.
he equations now become

These equations are of the same form as those pre-
mted in=references 2, 3, and 5. By comparison it is
]esibIe to define the various constants of the equation..

these references in terms of the variables involved.
The following table of corresponding symbols has been

~epared for future reference. The parameters from
:ferences 2 and 3 are, for obvious reasons, expras.sed

terms of the old British system of coefficients; the
@ES were measured in radians; the pitching moment
as measured about the airfoil nose.

Parameter

NACA

[
3 stem
) coef-
Ecients

Refer-
ence 5

al

------ .

– xl

– kz

------ .

------ .

------ .

------

------

—u

—m

au

Old British system of coefficients

Reference 2

al

a~

a:——
al

------------

1——
4

—m

-------------

- bl

–h

b,——
al

_b=ha, -b:
al

------------ .

Reference 3

----------- ___

—h, or –Xl

– h. or –-X2

1——
4

—m, or —ml

—na,or —m2

------------ --

--------- —--4

– 1%

–bn or –bI,I

– b,,or – bl$
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SUMMARY OF? RELATIONSHIPS I
The slopes summarized. in the following equations

are useful for design purposes find may be computed
with the aid of the charb of figures 1 and 2.

(%).a:-(%)a,,a(%)c.,tt
(%).,6,=-(=)1,,6($)C.,*,

()acm—.

()ah aa 8[,6,
z ,,,,t=~(–)b df, &

(%).,,t=-(%)d,,,(%)c.,~t+(%)c.,~.

(%)..,.=-&(+& - :



APPENDIX B
DEVELOPMENT OF FORMULAS FOR TRIM, BALANCE, AND FREE-CONTROL CONDITIONS

For an airfoil with a flap and a “trnuming tab, the forrgula for the tab deflection required to trim, where for
trim CAjis O, was developed in the following manner.

From the thin-airfoil theory (see appendix A)

c“=(=)t,,a[~-(%)c”$,)-(%)c”tt)d
c~f=(2)J,,Jtc~+(2)c.aP+(2)c.J:

Solve for 67in equation (1):

,/= [C”-(%),,. ~,%+(%)&.t(~),*,!Jl—

(%)J,.,(%)C.,J,

Because Cfif=O to trim, equation (3) maybe equated to O. Solve for ~~(c,.O)
f

and obtain

(1)

(3)

(la)

(h)

If C~ for the condition when Ghf=o is substituted for C~ in equation (la), 6J will become &,c,,mO). Now equa-

tions (1a) and (.3a) may be equated and the resultant expression may be solved for at to trim ~~(ch.O).r

[

a.+()
‘f(chrmm=

1C“(ch’d)-(g),,,:(~)c.,a,+(gi::‘($,.,, ‘ ‘(5,
(*L (a.,
(%L(%9...8,

ln this form, the tab deflection to trim may be determined by direct substitution of the values for the
parameters m given in the data for this report.

The flap deflection with the tab set to trim may be determined from equation (la), which, when combined
and rewritten, becomes

(%,-o)
6J(C*f-0)= — aa

(WLF )
acfN ‘aQ+(~)cm,~f6(ch,-0,] (C)
= 8(,5,

The equations for an airfoil and a flap -with a balancing tab were derived as follows:
For a balancing tab, at is f(6f), so that 6~=K~j+~%, where K is a constant for a linear va.riatiou of b~ with

~r, and ah is the initial tab setting. Therefore equations (1) and (3) become

and

With controls free, CAf=O and equation (3) becomes

0=(2)6f,8tcN+(2)c.Jf`'(chF0)+(2)c=~(K
Revise equation (1) by changhg CM@ CN@B,-O1and substitute 6Wxf.0Y‘or 61; ‘e ‘b ‘Xpression ‘or CNtchf-~

in the foregoing relation, and the flap angle for control-free condition becomes
430194°—4!!-21 309
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hch,-o)
. (7)

The equation for the normal-force coefficient. with free gmtrols & obtained by substituting t~e free- ,
floating flap deflection from equation (7) into equation (l). Thus

cN(chf-0)=(~)~,>~[aa-(%)c.,dfibf4)-(%(8)

By the actual substitution of the right-hand member of equation (7), this equation may be written as

cN(chf-0)=(%)d,,Jt{aa-(%)c.,J,`f0+[(%)cnt8,+K(%)cn,d,]

By the differentiation of equation (7) with respect to a, d%being a constant, the stabilizing factor becomes

(~)h.d(~)d/,&

'2)chf-0=:=+)J,,Jt(%)c.3#+(~)cmJt+i-(%)J/,dtg)d:a,(:jc.,6f+(%)c.4] “i)

If equation (8) is dillerentiated with respect to a, the slopo of the normal-force coeiiicient curve becomes

(lo)

or by di.Rerentiation of equation (8a)

By the use of the slope relations summarized at the
end of appendix A, it can easily be shown that equa-
tions (5), (6), (7), and @) may be considerably sim-
plified. When this simplification has been made,
these equations read as fo~mvs:

cN(Chr=.O) _ (‘N%,-o) + ~c

‘w (5a)

“’ch’”o’=%:($cn,tli%a“a)
h(ch,.o)—

(%)d,,,y+(g)e,,:o

‘-I%Z7RZ ‘7a)

($)Ci7,-0=-& ------ (Qa]
~ .J,
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